In the Wright Brothers tunnel, the flow accelerates rapidly from $V_{1}=10 \mathrm{~m} / \mathrm{s}$ just upstream of the test section, to $V_{2}=40 \mathrm{~m} / \mathrm{s}$ inside the test section. The test section door is open, so that its pressure inside is $p_{2}=p_{\text {atm }}=10^{5} \mathrm{~Pa}$. Also, the temperature inside the test section is $T_{2}=300 \mathrm{~K}$, and $R=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$. These quantities are measured away from the tunnel-wall boundary layers.
a) Assuming that this is a low-speed flow, estimate the pressure drop $p_{2}-p_{1}$.
b) Determine all the upstream conditions p_{1}, T_{1}, ρ_{1}.
c) Was the assumption of a low-speed flow in a) justified? Explain.
d) A soap bubble machine sends small bubbles at point 1 . What is the percentage change in the volume of a soap bubble when it moves to point 2 in the test section?

